Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection.
نویسندگان
چکیده
To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum Thus, the GFP strand system can be broadly used to investigate effector biology in planta.
منابع مشابه
Peer Review Report for 10.1105/tpc.17.00027 Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types During Infection
Review timeline: TPC2017-00027-BRR Submission received: Jan. 11, 2017 1st Decision: Feb. 20, 2017 revision requested TPC2017-00027-BRR1 1st Revision received: April 16, 2017 2nd Decision: May 12, 2017 accept with minor revision TPC2017-00027-BRR2 2nd Revision received: May 14, 2017 3rd Decision: May 25, 2017 acceptance pending, sent to science editor Final acceptance: June 8, 2017 Advance publi...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملComparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia.
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteri...
متن کاملTracking the Bacterial Type III Secretion System: Visualization of Effector Delivery Using Split Fluorescent Proteins.
Bacterial pathogens use the Type III secretion system to deliver dozens of effector proteins into host cells; for example, the plant pathogen Pseudomonas syringae can deliver more than 30 effectors. These effectors have multiple, nefarious functions that help the pathogen thrive in its host (reviewed in Toraño et al., 2016). Effectors target conserved host processes including pathways for entry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2017